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FOURIER–PADÉ APPROXIMATIONS AND FILTERING
FOR SPECTRAL SIMULATIONS

OF AN INCOMPRESSIBLE
BOUSSINESQ CONVECTION PROBLEM

M. S. MIN, S. M. KABER, AND W. S. DON

Abstract. In this paper, we present rational approximations based on Fourier

series representation. For periodic piecewise analytic functions, the well-known
Gibbs phenomenon hampers the convergence of the standard Fourier method.
Here, for a given set of the Fourier coefficients from a periodic piecewise ana-
lytic function, we define Fourier–Padé–Galerkin and Fourier–Padé collocation
methods by expressing the coefficients for the rational approximations using
the Fourier data. We show that those methods converge exponentially in the
smooth region and successfully reduce the Gibbs oscillations as the degrees of
the denominators and the numerators of the Padé approximants increase.

Numerical results are demonstrated in several examples. The collocation
method is applied as a postprocessing step to the standard pseudospectral
simulations for the one-dimensional inviscid Burgers’ equation and the two-
dimensional incompressible inviscid Boussinesq convection flow.

1. Introduction

In this paper, we discuss a rapidly converging approximation to a finite Fourier
series by defining a rational function whose denominator and numerator are repre-
sented as a finite Fourier sum. The underlying principle of rational approximation
was proposed by H. Padé in 1892 [4, 13]. With the advent of computer in the
1950s, Padé rational approximations have become a popular computational method
for representing functions, especially rapidly converging functions. They are gen-
erally more efficient than polynomial approximations, with a reduced number of
operations at the same accuracy [5, 6, 7, 8, 16].

The main objective in this paper is to present simple algorithms for computing
Fourier–Padé rational approximations for discontinuous functions. The algorithms
are applied as a filter to accelerate the convergence of the oscillatory pseudospec-
tral solutions of nonlinear partial differential equations, in particular the inviscid
Burgers’ equation and incompressible Boussinesq convection flow in the absence of
viscosity.

Fourier methods are powerful numerical tools for approximating periodic ana-
lytic functions with spectral convergence. However, with periodic piecewise analytic

Received by the editor June 3, 2003 and, in revised form, July 7, 2004.
2000 Mathematics Subject Classification. Primary 41A20, 41A21, 41A25, 65T10, 65T20.
Key words and phrases. Rational approximation, Gibbs phenomenon, Fourier–Padé–Galerkin
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functions, the well-known difficulty of the Fourier methods is the slow rate of con-
vergence O( 1

N ) globally and the oscillations of O(1) near singularity, the so-called
Gibbs phenomenon [9, 10, 11].

In order to overcome the oscillatory behavior of the Fourier methods for discon-
tinuous problems, many numerical techniques have been developed. For a given
finite set of Fourier data, the Gegenbauer reconstruction techniques [12] remove
the oscillations completely, with spectral convergence up to the discontinuity as the
degrees of Gegenbauer polynomial expansion increase, when reasonably accurate
information for the location of discontinuities is provided.

With no knowledge of the singularity, however, Padé reconstruction successfully
recovers a nonoscillatory solution with a reduced overshoot at the singularity. The
reason is that the possible existence of poles of some order for the denominator of
the Padé approximant allows a better approximation to those functions exhibiting
singular behavior, such as large gradient and discontinuity.

In [8], Geer presents a method for implementing the rational trigonometric ap-
proximations for even or odd 2π-periodic piecewise smooth functions and the ap-
plication to the solution of an initial boundary value problem for a simple heat
equation. In his work, Fourier–Padé approximants are defined in a nonlinear way
such that the relation between the coefficients of the rational approximations and
the Fourier coefficients involves a necessary procedure of calculating the integra-
tion of rational functions, which makes the numerical scheme relatively complicated.
Moreover, Geer studies only the case for even and odd functions, not the general
case.

In [7], Fourier expansion is treated as a Laurent expansion. Using a Fourier–
Padé rational approach, the authors obtain the spectral convergence up to the
discontinuity by subtracting the jump from the Fourier data. This approach has
the disadvantage of requiring advance knowledge of the singularity.

Here we present two Fourier–Padé methods for the general case of piecewise an-
alytic functions, with no advance knowledge of the singularity. We demonstrate
simple ways of implementing Fourier–Padé–Galerkin and Fourier–Padé collocation
methods, and we apply these methods to simulate the solutions of nonlinear partial
differential equations. For hyperbolic partial differential equations such as Burgers’
equation, an initially smooth function can evolve into shock in time for the inviscid
case and into a large gradient for the viscous case. Therefore, the standard spec-
tral simulations will exhibit the Gibbs phenomenon and reduce the accuracy of the
numerical solutions in time. From accurate Fourier data computed by the Fourier
method, we apply the Fourier–Padé reconstruction as a postprocessing step. After
postprocessing, the computational results show successful reduction of the nonphys-
ical oscillations in the standard spectral solutions of the one-dimensional inviscid
Burgers’ equation and the two-dimensional inviscid Boussinesq equations. Further
study is needed to find the optimal relation between the degrees of the polynomial
of the Padé approximants and the number of the Fourier coefficients.

This paper is organized as follows. In Section 2, the Fourier–Padé–Galerkin
method is discussed. The Fourier–Padé–Galerkin coefficients of the denominator
are explicitly represented as a linear combination of the given Fourier coefficients.
Numerical computations with this method are carried out with the sawtooth func-
tion. Section 3 introduces a new method using collocation points. Explicit formula-
tions for the Fourier–Padé collocation coefficients are presented in a manner similar
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to that used to present the Fourier–Padé–Galerkin method. The sawtooth function
is again used for the numerical simulations. Section 4 demonstrates the success of
the Fourier–Padé collocation method in mitigating the oscillations near the sharp
gradient for the spectral solutions of the one-dimensional inviscid Burgers’ equa-
tion and the two-dimensional incompressible inviscid Boussinesq convection flow.
Section 5 summarizes our results.

2. Fourier–Padé–Galerkin approximation

Let SN be the space of trigonometric polynomials of degree N defined as

SN = span{einx| − N ≤ n ≤ N}.(2.1)

Consider a piecewise analytic 2π-periodic function u(x) in [−π, π]. We define the
Fourier–Padé–Galerkin approximation of u by

RK,M =
PK

QM
,(2.2)

where PK ∈ SK and QM ∈ SM , such that

(2.3) (QMu − PK , v) = 0 for all v ∈ SK+M ,

with the inner product defined by

(u, v) =
1
2π

∫ π

−π

u(x)v(x)dx.(2.4)

Let us denote

PK =
K∑

k=−K

bkeikx and QM =
M∑

m=−M

cmeimx.(2.5)

The Fourier series representation of u is expressed by

u(x) =
∞∑

n=−∞
ûneinx,(2.6)

where

ûn =
1
2π

∫ π

−π

u(x)e−inxdx.(2.7)

Then, substituting PK , QM and v = einx for −(K +M) ≤ n ≤ K +M to (2.3), we
obtain the following equations:

bk =
M∑

m=−M

cmûk−m for |k| ≤ K(2.8)

and
M∑

m=−M

cmûn−m = 0 for K < |n| ≤ K + M.(2.9)



1278 M. S. MIN, S. M. KABER, AND W. S. DON

The system of equation (2.9) can be written in a matrix form, Ac = 0, where
c = [cM , ..., c−M ]T and 2M × (2M + 1) matrix A defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

û−(K+2M) · · · û−(K+M) · · · û−K

û−(K+2M−1) · · · û−(K+M−1) · · · û−(K−1)

...
...

û−(K+M+1) · · · û−(K+1) · · · û−(K−M+1)

ûK−M+1 · · · ûK+1 · · · ûK+M+1

...
...

ûK−1 · · · ûK+M−1 · · · ûK+2M−1

ûK · · · ûK+M · · · ûK+2M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(2.10)

We solve this linear system numerically using the MATLAB subroutine Null(A),
which gives the basis of the kernel of the 2M × (2M +1) matrix A. Once we obtain
a set of the coefficients {cm}M

m=−M , the coefficients {bk}K
k=−K can be computed

from (2.8). Note that the continuous Fourier coefficients involved in computing bk

and cm are

{ûn}K+2M
n=−(K+2M),(2.11)

and we denote N = K + 2M .

Example 1. We demonstrate the numerical results of the Fourier–Padé–Galerkin
approximation for a sawtooth function

u(x) =
{

x + π for x ∈ [−π, 0),
x − π for x ∈ [0, π],(2.12)

for which the continuous Fourier coefficients are û0 = 0 and ûn = −i/n for n =
±1,±2, . . . .

The left figure in Figure 2.1 illustrates the Gibbs phenomenon when the stan-
dard Fourier–Galerkin approximation is applied to the sawtooth function for the
number of Fourier modes N = 8, 16, 32. The right figure in Figure 2.1 shows the re-
constructed sawtooth function using the Fourier–Padé–Galerkin approximant (solid
line). The Gibbs oscillation is clearly being reduced near the discontinuity.
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Figure 2.1. Gibbs oscillations by Fourier–Galerkin (FG) approx-
imation (left) and Fourier–Padé–Galerkin (FPG) reconstruction
(right) for the sawtooth function.
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Figure 2.2. Convergence of the pointwise errors after the
Fourier–Padé–Galerkin reconstruction for the sawtooth function
with a fixed N (left) and a fixed M (right), respectively.

The pointwise errors are shown in Figure 2.2. In the left figure, for a given fixed
N = 32, the degree M of the denominator of the Padé approximant is increased. For
M = 0, it is exactly the standard Fourier–Galerkin method. The pointwise errors
decay like O( 1

N ) away from the discontinuity, and O(1) accuracy is observed clearly
at the location of the jump. By increasing the degree M of the denominator, the
errors decay exponentially away from the discontinuity as M increases. For a fixed
M = 2, the rate of convergence of the pointwise error away from the discontinuity
is only linear as N increases.

3. Fourier–Padé collocation approximation

Let IN be the space of the trigonometric polynomial of degree N , defined as

IN = span{einx| − N ≤ n ≤ N − 1}.(3.1)

Consider a set of even number of grid points

xj = −π +
πj

N
, j = 0, ..., 2N − 1.(3.2)

We define the Fourier–Padé collocation approximation of u by Rc
K,M = P c

K

Qc
M

, where
P c

K ∈ IK and Qc
M ∈ IM (K + 2M = N), such that

(3.3) (Qc
Mu − P c

K , v)N = 0 for all v ∈ IK+M ,

where the discrete inner product is defined by

(u, v)N =
1

2N

2N−1∑
j=0

u(xj)v(xj).(3.4)

Denote

P c
K =

K−1∑
k=−K

b̃keikx and Qc
M =

M∑
m=−M

c̃meimx.(3.5)
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Then, substituting P c
K , Qc

M and v = einx for −(K + 2M) ≤ n ≤ K − 1 + 2M to
(3.3), we obtain the following equations: for −K ≤ k ≤ K − 1,

b̃k =
M∑

m=−M

c̃mũk−m,(3.6)

and, for −(K + M) ≤ n < −K and K − 1 < n ≤ K − 1 + M ,

M∑
m=−M

cmũn−m = 0,(3.7)

where

ũn =
1

2N

2N−1∑
j=0

u(xj)e−inxj .(3.8)

Following a procedure similar to that in Section 2, we have a linear system Ãc̃ = 0
to solve c̃, where c̃ = [c̃M , ..., c̃−M ]T and

(3.9) Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ−(K+2M) · · · ũ−(K+M) · · · ũ−K

ũ−(K+2M−1) · · · ũ−(K+M−1) · · · ũ−(K−1)

...
...

ũ−(K+M+1) · · · ũ−(K+1) · · · ũ−(K−M+1)

ũK−M+1 · · · ũK+1 · · · ũK+M+1

...
...

ũK−1 · · · ũK+M−1 · · · ũK+2M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We solve this linear system numerically using the MATLAB subroutine Null(Ã),
which gives the basis of the kernel of the 2M × (2M +1) matrix Ã. Once we obtain
a set of the coefficients {c̃m}M

m=−M , the coefficients {b̃k}K−1
k=−K can be computed

from (3.6).
Note that the discrete Fourier coefficients involved in computing b̃k and c̃m are

{ũn}K+2M−1
n=−(K+2M).(3.10)

Remark 3.1. The Fourier–Padé collocation approach does not interpolate the func-
tion u(x) at the collocation points xj = −π + πj

N . Since from (3.6)

b̃k =
M∑

m=−M

c̃m

⎛
⎝ 1

2N

2N−1∑
j=0

u(xj)e−i(k−m)xj

⎞
⎠

=
1

2N

2N−1∑
j=0

u(xj)Qc
M (xj)e−ikxj ,

we have

P c
K(x) =

2N−1∑
j=0

u(xj)Qc
M (xj)

(
1

2N

K−1∑
k=−K

eik(x−xj)

)
.
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Figure 3.1. Gibbs oscillations by Fourier collocation (FC) ap-
proximation (left) and Fourier–Padé collocation (FPC) reconstruc-
tion (right) for the sawtooth function.

Thus we can simplify the Fourier–Padé collocation expansion as follows:

Rc
K,M (x) =

2N−1∑
j=0

u(xj)wj(x),(3.11)

where

wj(x) =
Qc

M (xj)
Qc

M (x)

(
1

2N

K−1∑
k=−K

eik(x−xj)

)
.(3.12)

Clearly, since K = N − 2M , for M �= 0,

wj(xi) =
{

(N−2M)
N for xi = xj ,

not always zero for xi �= xj .

Thus, wj(x) is not a Lagrange interpolation polynomial with the grids xj (0 ≤ j ≤
2N − 1) defined here.
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Figure 3.2. Convergence of the pointwise errors after the
Fourier–Padé collocation reconstruction for the sawtooth function
with a fixed N (left) and a fixed M (right), respectively.
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Example 2. We present the numerical results of the Fourier–Padé collocation
method applied to the same example as defined in (2.12). As expected, the behavior
of the Fourier–Padé collocation approach is similar to the one for the Fourier–Padé–
Galerkin approach as shown in Figures 3.1 and 3.2.

4. Applications

In this section, we apply the Fourier–Padé collocation postprocessing procedure
to the nonlinear hyperbolic and elliptic partial differential equations for which an
initially smooth solution will develop a shock and sharp gradient in time, respec-
tively. We discuss our numerical study of the inviscid Burgers’ equation and two-
dimensional incompressible inviscid Boussinesq convection flow. The algorithm for
solving these two problems with periodical boundary condition is straightforward
and presented in the literature. A detailed description of the basic building blocks
of the algorithm is provided in each subsection.
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Figure 4.1. Evolutions of the exact solution (left) and the filtered
(order=16) Fourier numerical solutions for the inviscid Burgers’
equation at different times on grids 256.
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Figure 4.2. The exact solution (left) and after the Fourier–Padé
reconstruction (right) for the filtered Fourier numerical solutions
at t = 1.5. Nc = 64 on grids 256.
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4.1. Burgers’ equation. The Burgers’ equation is a suitable model for testing
computational algorithms for flows where steep gradients or shocks are anticipated
because it allows exact solutions for many combinations of initial and boundary
conditions. Here we consider the inviscid Burgers’ equation in one dimension,

∂u

∂t
+

∂

∂x

(
1
2
u2

)
= 0,(4.1)

with the initial condition

u(x, 0) = sin(x).

Figure 4.1 shows the evolution of the exact solution for the Burgers’ equation.
With the sine wave as an initial condition, the solution forms a stationary shock
due to the nonlinearity in (4.1). The numerical solutions performed by the stan-
dard Fourier collocation methods are shown in Figure 4.1 (right). The third-order
Runge–Kutta method is used for time integration, and the high-frequency compo-
nents are smoothed out at each time step by using the exponential filter of order
16 in order to stabilize the scheme [18]. As predicted, one can observe the Gibbs
oscillations near the shock at t = 1.5, a natural consequence when one considers
the Fourier method to approximate a discontinuous solution.

We note that one should not attempt to reconstruct the function using all the
modes in the Fourier spectrum. Depending on the order of the filtering used for
the stability of the numerical scheme, only the Fourier coefficients from the lower
one-half to two-thirds of the Fourier spectrum are used in the postprocessing re-
construction step, since the upper portion of the Fourier spectrum does not contain
highly accurate information. Thus, an additional parameter for the cut-off fre-
quency Nc should be specified to determine the upper bound of the Fourier mode,
information that will not contribute in the reconstruction step.

The numerical results in Figure 4.2 show that the oscillations have been mitigated
after the Fourier–Padé reconstruction for the filtered Fourier numerical solutions at
t = 1.5. The pointwise errors shown in Figures 4.3–4.4 demonstrate the successful

0 1 2 3 4 5 6
10−14

10−12

10−10

10−8

10−6

10−4

10−2

10 0

N=128 

N=256 

N=512 

0 1 2 3 4 5 6
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

N=128  M=10 
N=256  M=19 
N=512  M=26 

Figure 4.3. Convergence of the pointwise errors for filtered (or-
der=16) Fourier collocation methods (left) and after the recon-
struction by the Fourier–Padé collocation method for the inviscid
Burgers’ equation at t = 1.5.
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Figure 4.4. Comparison of the pointwise errors for filtered (or-
der=16) Fourier methods and Fourier–Padé reconstruction for the
inviscid Burgers’ equation at t = 1.5 on different size of the grids
128, 256, 512 and m = 10, 19, 26, respectively.

reduction of the spurious oscillations away from the discontinuity after the Fourier–
Padé postprocessing. The exponential decays in errors are observed as N and M
increase. Here we use the cut-off frequency Nc = N

2 .
In this section, we present some preliminary results for the use of the Fourier–

Padé reconstruction to recover the essentially nonoscillatory solution applied to
the standard Fourier spectral simulations for the two-dimensional incompressible
Boussinesq convection flow.

The mass conservation and the motion for an incompressible inviscid fluid with
gravity as the only force acting on the fluid in the upward vertical direction has the
form

∂ρ

∂t
+ u · ∇ρ = 0,(4.2)

∂u
∂t

+ u · ∇u + ∇p =
(

0
ρg

)
,(4.3)

∇ · u = 0,(4.4)

where ρ is the density (or temperature), u = (u, v) is the velocity vector, p is the
pressure, and g is the gravitational constant (normalized to 1).

For the two-dimensional flow of an incompressible fluid in the x-y plane, mass
conservation is satisfied by writing

u =
∂ψ

∂y
, v = −∂ψ

∂x
,(4.5)

where the scalar function ψ(x, y, t) is the stream function. Let ω be the vorticity
defined by ω = ∇ × u. Then the above system can be rewritten as follows, the
so-called stream function-vorticity formulation:

∂ρ

∂t
+ u · ∇ρ = 0,(4.6)

∂ω

∂t
+ u · ∇ω = −∂ρ

∂x
,(4.7)

−�ψ = ω.(4.8)

The initial condition is the same as the one in [15], consisting of a smooth bubble
density in a zero flow field. The density function as an initial data is given as

ρ(x, y, 0) = 50ρ1ρ2(1 − ρ1),(4.9)



FOURIER–PADÉ 1285

where

ρ1 =

{
exp

(
1 − π2

π2−R2
1

)
R2

1 = x2 + (y − π)2 < π2,

0 otherwise

and

ρ2 =

{
exp

(
1 − R2

3
R2

3−R2
2

)
R2 = |x − 2π| < R3 = 1.95π,

0 otherwise.

The density contour at t = 0 is shown in Figure 4.5, computed with 5122 grids.
For this smooth initial data, the solution remains smooth for a short time, as
shown in Figure 4.7. As the bubble rises to the right, however, the front of the
bubble steepens into a sharp gradient. A large amount of vorticity is generated
from the source term in the vorticity equation and deposited around the sharp
density edge. Following [3] and [15], one can claim that if a solution develops
a singularity in finite time, then the density gradient should grow exponentially.
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Figure 4.5. Density contour of the Boussinesq equations at t =
0.0 (left) and t = 1.1 (right) with the Fourier collocation methods
on grids 5122.
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Figure 4.6. Density contour of the Boussinesq equations at t =
2.2 (left) and t = 3.0 (right) with the Fourier collocation methods
on grids 5122.
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Figure 4.7. Evolution of density along the symmetry axis x = π
by the filtered (order=16) Fourier method on grids 5122.

To resolve the singularity, one would have to refine the grid continuously around
the gradient front, a procedure that is neither realistic nor practical. Hence, it
remains controversial whether there exists a finite time singularity in such flows.
Various computational computational techniques have been developed [14], [15],
[17], [19]. Moving mesh computations have been performed in [19], which uses an
adaptive grid strategy developed in [17]. In [15], the ENO method has been applied
for simulating the evolution of the bubble with the same initial setup we present
here. Their numerical results are consistent with the experimental results in [1],
demonstrating severe deformation of the bubble in the lower part while retaining
the shape of the bubble on the top.
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Figure 4.8. Density along the symmetry axis x = π after recon-
struction with the Fourier–Padé collocation method on grids 5122,
Nc = 137, M = 46.
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Figure 4.9. Time history of the maximum density along the sym-
metry axis y = π: filtered Fourier (left) and after the Fourier–Padé
reconstructions (right) with dots on grids 2562, M = 64, Nc = 14,
dash-dot on grids 5122, M = 24, Nc = 24, and solid line on grids
10242, M = 34, Nc = 34.
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Figure 4.10. Time history of the minimum density along the
symmetry axis y = π: filtered Fourier (left) and after the Fourier–
Padé reconstructions (right) with dots on grids 2562, M = 64,
Nc = 14, dash-dot on grids 5122, M = 24, Nc = 24, and solid
line on grids 10242, M = 34, Nc = 34.

In our work, we use the standard Fourier collocation method in space, with a pe-
riodic boundary condition. The third-order TVD Runge–Kutta scheme is used for
evolution in time for the equations of mass conservation and vorticity production.
The exponential filters are applied at each time step in order to maintain the sta-
bility of the scheme, following the robust method in [18]. The order of filter varies
from 12 to 16 as the resolution of the simulation increases. The traditional Fourier
collocation method results in disastrous oscillations when the solution develops a
large gradient and the number of Fourier modes are not sufficient enough to fully
resolve the gradient. Here we investigate a way of suppressing the spurious oscil-
lations near singularity and an accurate recovery of the underlying nonoscillatory
solution by using Fourier–Padé reconstruction as postprocessing as the final time
step. As with the Burgers’ equation, this approach is possible because the Fourier
spectral simulation contains highly accurate information about the solution.
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Figure 4.11. Density along the symmetry axis y = 3.91 at t =
3.0 with filtered Fourier collocation method (left) and after the
Fourier–Padé reconstruction (right) on grids 5122, M = 26, and
Nc = 136.
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Figure 4.12. Density along the symmetry axis x = π at t = 3.0
by filtered Fourier collocation method (left) and after the Fourier–
Padé reconstruction (right) on grids 5122, M = 49, and Nc = 148.

The Poisson equation (4.8) in the spectral discretization is expressed by Aψ +
ψB = ω in a matrix equation. In order to solve this linear system and compute
a vector ψ on the discretization for a given vorticity ω, the matrices A and B are
cast in the lower and upper Schur form, and the transformed system is solved by
backward substitution as in [2].

Figures 4.5–4.6 show the density profiles at different times, computed by stan-
dard filtered Fourier spectral simulation. As shown in [15], the sharp front density
is developed from a smooth initial profile. Nonphysical oscillations start to appear
when the numerical solution nearly reaches singularity in time if the numerical solu-
tion is underresolved. The one-dimensional cuts of the density at y = π at different
times are shown in Figure 4.7. As a result of the overshoot and undershoot of the
Gibbs, the minimum(=0.0) and the maximum(=5.3084) value of the density are
poorly represented in Figure 4.7.
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One can effectively recover the nonoscillatory solution by mitigating the Gibbs
oscillations with the use of the Fourier–Padé reconstruction as a postprocessing
step in the numerical solution with the filtered Fourier collocation method.

For the Fourier–Padé reconstruction procedure, the Fourier modes from the top
spectrum are discarded, as was done for the Burgers’ equation, because the lower
spectrum of the Fourier modes are accurately resolved and the numerical errors are
usually associated with the high modes. Thus, to get the best reconstruction, one
must select a reasonable cut-off frequency Nc.

In Figures 4.7–4.12, the numerical results show the time history of the minimum
and maximum values of the density before and after the Fourier–Padé reconstruc-
tion procedure. One can observe that, for all practical purposes, the Gibbs over-
shoot and undershoot are effectively removed, even for the cases of the small scale
structure shown in Figures 4.11 and 4.12.

5. Conclusion

Using rational approximation based on the Fourier series, we have defined the ex-
plicit representations of the Fourier–Padé–Galerkin approximation and the Fourier–
Padé collocation approximation in terms of the given continuous and discrete
Fourier coefficients, respectively.

Numerical results for the Fourier–Padé–Galerkin and Fourier–Padé collocation
methods show the successful mitigation of the Gibbs oscillations away from the
singularity with spectral convergence, as the grids are refined and the degree of the
denominator is increased.

Numerical simulations for the inviscid Burgers’ equation and two-dimensional in-
compressible Boussinesq convection flow show the successful reduction of the Gibbs
oscillations in the standard Fourier spectral simulations after postprocessing with
Fourier–Padé reconstruction.
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